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Executive Summary:

= High-frequency data facilitates clustering different products and identifying
regimes for execution purposes.

= Previous QB white papers have addressed regimes in execution performance using
microstructure variables.

= The problem with high-frequency data is the curse of dimensionality.

= Secondly, high-frequency data is noisy, and the relationship between the input
variables such as quote size, volatility, and liquidity, etc., is not linear.

= Simple clustering techniques are inadequate in dealing with the noise in the input
features.

= This paper refers to an unsupervised Neural Network method to cluster
instruments.

® Forthcoming papers will use this clustering technique for cost estimation of
products across different regimes and even exchanges.

INTRODUCTION

Market movements are motivated by an uncountable number of factors. To model these
factors, one must work in extremely noisy high dimensional spaces. However, most
tractable methods of analysis require low dimensionality. As a result, feature
identification and feature engineering largely determine the effectiveness of most
financial models. Unfortunately, due to the excess prevalence of non-linearities and
non-experimental nature, feature engineering for financial datasets is a laborious and
challenging task. Fortunately, deep neural methods do not suffer from this problem.
Deep neural methods can automatically discover non-linear feature maps and produce
low-dimensional spaces for learning tasks [6]. These features can be used directly for
unsupervised learning tasks or used as inputs for supervised learning tasks [6].

This paper explores the motivation for dimensionality reduction using autoencoders and
variational autoencoders, provides a brief overview of variational autoencoders and
autoencoders, and introduces a novel application of variational autoencoders. Namely,
we explore the potential of using variational autoencoders for performing execution
regime identification.
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MOTIVATION FOR NON-LINEAR DIMENSIONAL REDUCTION

In our previous paper [7], we introduced the concept of multidimensional regimes. We
showed that regimes could impact arrival price slippage. Our focus was on using
different microstructure variables such as quote size, volatility, liquidity, etc. We used
simple k-means clustering to determine different regimes in an unsupervised manner.
Our multidimensional regime’s output identifies the current regime and recommends a
particular execution algorithm for that regime. However, there are several other
microstructure variables with non-linear relationships. To capture these non-linear
relationships and further understand the various execution performance regimes, we
must utilize a new learning paradigm. This paper partly addresses these issues using an
unsupervised neural network method of effectively combining the input features.

MODELS

AUTOENCODERS AND VARIATIONAL AUTOENCODERS

An Autoencoder is a learning network that attempts to reconstruct its input using a
lower-dimensional "bottlenecked” space. The initial mapping to the lower-dimensional
space is referred to as the encoder; the mapping from the lower-dimensional space to the
reconstructed input is known as the decoder [6]. Applications of autoencoders range
from pretraining deep neural networks to data noise reduction [1]. Figure 1 illustrates a
simple autoencoder network. However, since traditional autoencoder networks focus
only on reconstructing the original data, the latent dimensions are not ensured to be
continuous. As a result, the latent space may not be useable for tasks that rely on
continuity.

Variational Autoencoders (VAE) slightly modify the autoencoder paradigm. Instead of
outputting an encoded representation directly, the encoder output parameters to a
probability distribution. This distribution is then sampled, and the decoder attempts to
rebuild the original input based on the sampled value. Within this framework, the latent
variable is assumed to be continuous [5]. Hence, the resulting learned latent space is
continuous. As a result, variational autoencoders can produce far more useful spaces for
tasks that range from content generation to interpolation. However, variational
autoencoders are less general than vanilla autoencoders as they enforce a known prior
distribution.

VARIATIONAL AUTOENCODER WITH GAUSSIAN PRIOR (VAE)

A varational autoencoder assumes p(x,z) = p(x|z)p(z) as the generative model for any
given data point, x, and latent point, z. In its most simplest form, we assume a Gaussian
prior for the latent variable z. Thus we have z ~ N (0, 1) and since we have real valued
data, x|z ~ N (uz, o) [5].

We wish to train our varational autoencoder to model p(z|x)(encoder) and
p(x|z)(decoder). By Bayes rule we have p(z|x) = %. Further

p(x) = [, p(x|z)p(z)dz. Unfortunately, this integral would require exponential time to
compute for each point in our latent space. Hence, calculating p(x) is intractable. We
can resolve this by instead using a neural network to model another distribution, ga(z|x)
such that g, (z|x) is close to p(z|x). To measure the similarity between two
distributions we can use the Kullback-Leibler Divergence [3]. Formally, we define

Dk (P|1Q) = Ep[logP(x) —log Q(x)] [3]. Now we wish to find A* such that g« (z|x) =
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miny Dk; (q(z]x)|lp(z|x)) This can be achieved by maximizing the evidence lower bound
(ELBO) [5]. We define the ELBO as: ELBO(A) = Eg, z|x)[log p(x|2)] — Dkr(qa(z]1x)||p(2))

Hence, we can train our autoencoder using

L(A) = —ELBO(A) (1)

In the context of an autoencoder, E;, ;|x)[log p(x|z)] is the reconstruction error of our
network. Thus we can regard a variational autoencoder as a variant of an autoencoder
that regularizes the latent space to follow a known prior probability distribution.

VARIATIONAL AUTOENCODER WITH GAUSSIAN MIXTURE PRIOR (GMVAE)

To enforce a Gaussian mixture prior, we will assume the generative model,

p(x,z,c) =p(c)p(zlc)p(x|z,c). We assume ¢ ~ Cat(%), zlc ~ N (uc, o), and since our
data is real valued we additional assume x|z,c ~ N (Uz, 0z). Again we wish to
maximize the ELBO. Following [9], [2] we thus have

L(A) = > a(ylx)(logq(yIx) —logp(y) +logq(zlx,y) —logp(z|y) —logp(x|y,z)) (2)
y

Note, >, q(y|x)(logq(y|x) —logp(y)) enforces the prior distribution of the
categorical variable, >, q(y|x)(logq(z|x,y) —logp(z|y)) enforces the Gaussian prior
of each mixture component, and >., q(y[x)(—logp(x|y,z)) is the negative log
likelihood of our reconstructed data.

DISENTANGLING THE LATENT REPRESENTATION (3-VAE)

We can additionally view maximizing ELBO as a constrained optimization problem where
we wish to maximize the reconstruction error of our data such that our latent embedding
follows a known probability prior. More rigorously, we wish to maxE, z|x)[logp(x|z)]
such that Dgr(ga(z|x)||p(z)) < € for some small € [4]. If we attempt to solve this using
Lagrange multipliers, we must maximize Eg, ;|x)[log p(x|2)] — B(Dkr(qa(z]1x)||p(2)))
where B is our Lagrangian. We may view 8 as a tunable hyperparameter which
regularizes our latent space. If we increase f, our encoder must use our latent space
more efficiently. Since disentangled representations are encoded more efficiently,
increasing S forces the autoencoder to disentangle the latent space [4].

Thus we can modify (2) to promote disentanglement of the latent space. Hence we obtain

LA) = > a(ylx)(B* (logq(y|x) —log p(y) +logq(zlx,y) —logp(zly)) —logp(x|y,z))
y
3)

REGIME DETECTION METHOD

We posit that different clusters of market microstructure variables exhibit different
execution performance. We suggest using a beta gaussian mixture variational
autoencoder to cluster our high dimensional market microstructure dataset. For this
research, we will consider the problem of identifying different execution performance
regimes for E-mini S&P 500 futures.

We will make use of both market data and order data collected by Quantitative Brokers.
Specifically, our market dataset consists of one-minute bined E-mini S&P 500 features
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related to 50-minute, 20-minute, and 15-minute volatility, quote size, average executed
order size, and amihud illiquidity from November 1, 2018, to December 28, 2020. In
total, our feature space is 30-dimensional. Additionally, we use an isolation forest to
remove any outliers from our market dataset and take each feature’s cubic root to scale
each feature robustly. Our order data consists of parent order features for orders
executed by Quantitative Brokers on the Chicago Mercantile Exchange from November 1,
2020, to December 28, 2020, with an order size greater than two.

First, we will train a B-GMVAE to learn a lower-dimensional latent representation of
market data from November 1, 2018, to November 1, 2020. Then we will use the
posterior cluster assignments of our embedded latent variable as our unsupervised
clusters. Finally, we will use our model to classify regimes for order data from November
1, 2020, to December 28, 2020, and analyze those orders’ market microstructure. Figure
2 shows the regime identification model in more detail.

MODEL DECISIONS

We opted to encode into a two-dimensional latent space, use four mixture components,
and B = 3. We noticed a fair bit of instability in our latent space. To address this,
following previous research with generative adversarial networks, we opted to include a
batch normalization layer after each dense layer and used a tuned optimizer [8].

RESULTS

We trained our final S-GMVAE on our market data from November 1, 2018, to November
1, 2020, reserving 10% of randomly shuffled datapoints as a test set. We first tested if the
B-GMVAE model could adequately form discrete clusters of our market data. As a
benchmark, we attempted to cluster our market data using PCA and a Gaussian Mixture
Model(GMM). We choose GMM as our shallow clustering layer for our benchmark because,
after the cubic transformation, each of our features nearly follows a standard normal
distribution. We observed a significantly richer latent space, with clearly discrete clusters
when using our S-GMVAE model as compared to PCA.

Figure 3 show the clusters found when applying our regime detection method on our test
set of market data. Figure 4 shows the clusters formed using the first two principal
components. The latent space created using the B-GMVAE model has discrete and
separable clusters compared to a simple PCA transformation. Moreover, the latent space
formed using the S-GMVAE is significantly less noisy than the PCA projection. Figure 5
shows the out of sample slippage results from using our regime detection method on our
order data. It is clear that our regimes separate the orders in a fashion that also
separates the orders’ market impact. Figure 6 shows the out of sample slippage results
using PCA and GMM. The benchmark collapses the out of sample order data into one
cluster. This is non-optimal and demonstrates the robustness of a f-GMVAE for regime
identification compared to traditional methods.

Using the regimes identified with our B-GMVAE, we analyze the out of sample during
execution order features. Table 1 shows the average value for various order features
during the execution of the order. We want to emphasize that these averages were
computed across the order’s horizon and not before the order. Moreover, the f-GMVAE
only used features computed before the order to make the regime predictions. It is clear
from these results that regimes persist during the execution of the order. It appears the
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TABLE 1
Order Feature

Averages During
Order Execution For

Each Regime

regimes stratify the different orders into various quote size, volatility, and illiquidity
classes. Moreover, the slippage of each regime matches the previous relationships
established in our previous paper. Orders where the quote size is large and volatility is
low have low slippage, and orders where volatility is high and quote size is small have
large slippage [7]. However, now we see two more regimes consisting of mid quote size
orders. Moreover, the regimes of mid-quote size orders have very different market
microstructure. One has very high volatility, and the other low volatility but high
illiquidity. While both regimes have similar slippage, it is clear they have different
variables driving the slippage. Hence, it is important to separate the regimes and execute

differently in each regime.

Feature Regime 1 | Regime 2 | Regime 3 | Regime 4
Quote Size 14 40 87 32
Realized Volatility 5.4e-04 8.7e-04 5.1e-04 3.6e-04
Executed Quantity 7.9 20 18 12
Order Size 8.2 22 18 12
Amihud Iliquity 4.7 2.7 0.34 3
Volume During Execution | 1.5e+03 1.3e+04 1.2e+04 | 3.2e+03
Arrival Price Slippage 0.50 0.27 0.059 0.23

CONCLUSION

In this paper we have introduced a novel application of deep generative models for
execution regime identification. By leveraging a B-GMVAE we were able to easily identify
various regimes of E-mini S&P futures. Unlike other methods, such as PCA+GMM our
model does not suffer from mode collapse on an out of sample dataset. Additionally, we
analyzed the market micro-structure of the various identified regimes and discovered
each regime has a unique market micro-structure. Moreover, the different
micro-structure results and their various aggregated market impact results were
consistent with our previous findings. We believe our model is just scratching the
surface at the possible applications of the B-GMVAE. We hope to leverage this model in
future to predict regimes across instruments, leverage instrument similarities to predict
regimes for newly introduced instruments, and serve as a basis for a cost mixture model.
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Input Layer € R® Hidden Layer € R® Hidden Layer € R* Hidden Layer € R® Output Layer € R®

FIGURE 1. Figure shows a simple, fully connected autoencoder. The middle hidden layer of R* is
the latent "bottlenecked” space. We train this neural network end to end with the same input and
output data. If autoencoder can sufficiently reconstruct the data, we can regard the middle latent
space as a dense encoding of our original dataset. In many ways, this is a natural extension of
Principle Component Analysis (PCA).
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FIGURE 2. The regime identification model take in market data before an order, creates a latent
representation using the trained encoder from the f-GMVAE and then uses the posterior category
assignment as the cluster assignments.
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FIGURE 3

Figure shows the
embedding of the
reserved market
data test set using
the S-GMVAE. In the
figure we clearly see
four well defined
clusters of latent
points. The coloring
represent the
various posterior
cluster assignments
assigned by the
B-GMVAE. We see
that the four
populations are

fairly balanced.

Latent Space and Cluster Assignments Using a B-GMVAE
on the Market Test Data
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PCA of Market Data and Cluster Assigments Using the Benchmark
Model on the Market Test Data
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FIGURE 4. Figure shows the two dimensional PCA projection of the reserved market data test set
and the cluster assignments provided by the GMM clustering layer. In the figure, we see only two
clearly defined populations of data. In addition, we see that the GMM layer struggles to classify the
four latent regimes of our data. Instead of identifying four equal sized populations, the mixture
collapses the majority of the data into one cluster.
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FIGURE 5

Figure shows the
average slippage of
our out of sample
order data set
within each of our
identified regimes
using the S-GMVAE.
We see a clear
separation of
slippage
characteristics
among our various
clusters. Moreover,
even with our out of
sample order data
set the clusters
remain balanced.

Average Slippage of Each ldentified Regime Using a B-GMVAE
on the Out of Sample Order Dataset
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FIGURE 6. Figure shows the average slippage of our out of sample order data set with each of the
identified regimes using the PCA+GMM benchmark model. Unfortunately, the entire latent space
has collapsed into a single mixture component(with the exception of a few outliers) and hence it is
clear this model provides an unusable and undesirable model for regime identification on our out
of sample dataset.
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